

¹Aymen Mahmoudi

¹Geoffroy Kremer, ¹Anis, Chiout, ¹Julien Chaste, ²Pavel Dubin, ²José Avila, ¹Fabrice Oehler, ¹Abdelkarim Ouerghi

¹Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120, Palaiseau, Paris, France

²Synchrotron-SOLEIL, Université Paris-Saclay, Saint-Aubin, BP48, Paris, F91192, Gif sur Yvette, France

aymen.mahmoudi@universite-paris-saclay.fr

Electronic band structure of Two-Dimensional Rhombohedral WSe₂ homobilayers

Twisted layers of atomically thin two-dimensional materials realize a broad range of novel quantum materials with engineered optical and transport phenomena arising from spin and valley degrees of freedom and strong electron correlations in hybridized interlayer bands^{1,2}. Here, we report experimental and theoretical studies of WSe₂ homobilayers obtained in stable configurations of 2H (60° twist) and 3R (0° twist) stackings by controlled chemical vapor synthesis of high-quality large-area crystals^{3,4,5}. We directly reported the electronic and structural properties of bilayer WSe₂ with the two stacking orders using micro-Photoluminescence (µ-PL) and micro-Raman spectroscopy, angle-resolved photoemission spectroscopy measurements (ARPES), and Density Functional Theory (DFT) calculations. Nano-ARPES clearly demonstrated that our bilayer with AB stacking shows a high spin-orbit coupling of about 500 meV. Our work opens up new perspectives in the development of optoelectronic and spintronic devices made of easily processable TMDs materials.

References

- [1] Ruitao Lv et al. Acc. Chem. Res. 2015, 48 (1), 56-64.
- [2] G. Wang et al, Rev. Mod. Phys. 90, 3721 (2018).
- [3] Jiangang He, et al. Phys. Rev. B 89, 075409 (2014)
- [4] Zhijie Li et al. Phys. Rev. B 106, 045411 (2022)
- [5] K. M. McCreary et al. Nanoscale 14, 147 (2022).

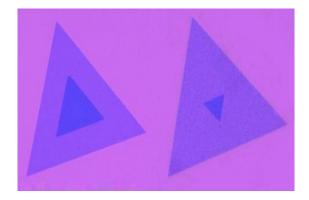


Figure 1: Optical image of CVD-grown WSe₂ bilayer flakes